Current research on hate speech analysis is typically oriented towards monolingual and single classification tasks. In this paper, we present a new multilingual hate speech analysis dataset for English, Hindi, Arabic, French, German and Spanish languages for multiple domains across hate speech - Abuse, Racism, Sexism, Religious Hate and Extremism. To the best of our knowledge, this paper is the first to address the problem of identifying various types of hate speech in these five wide domains in these six languages. In this work, we describe how we created the dataset, created annotations at high level and low level for different domains and how we use it to test the current state-of-the-art multilingual and multitask learning approaches. We evaluate our dataset in various monolingual, cross-lingual and machine translation classification settings and compare it against open source English datasets that we aggregated and merged for this task. Then we discuss how this approach can be used to create large scale hate-speech datasets and how to leverage our annotations in order to improve hate speech detection and classification in general.


翻译:当前有关仇恨言论分析的研究通常针对单语和单一分类任务。在本文中,我们为英语、印地语、阿拉伯语、法语、德语和西班牙语的多个领域跨仇恨言论 - 虐待、种族主义、性别歧视、宗教仇恨和极端主义提出了一个新的多语言仇恨言论分析数据集。据我们所知,这篇论文是第一篇在这六种语言中解决不同领域中各种类型仇恨言论识别问题的论文。在这项工作中,我们描述了如何创建数据集,为不同领域创建高级别和低级别的注释,以及如何使用它来测试当前最先进的多语言和多任务学习方法。我们评估了我们的数据集在各种单语、跨语言和机器翻译分类设置中,并将其与我们为此任务汇总和合并的英语开放源代码数据集进行比较。然后,我们讨论了如何使用这种方法创建大规模的仇恨言论数据集,以及如何利用我们的注释来改进仇恨言论检测和分类。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员