Existing methods for image synthesis utilized a style encoder based on stacks of convolutions and pooling layers to generate style codes from input images. However, the encoded vectors do not necessarily contain local information of the corresponding images since small-scale objects are tended to "wash away" through such downscaling procedures. In this paper, we propose deep image synthesis with superpixel based style encoder, named as SuperStyleNet. First, we directly extract the style codes from the original image based on superpixels to consider local objects. Second, we recover spatial relationships in vectorized style codes based on graphical analysis. Thus, the proposed network achieves high-quality image synthesis by mapping the style codes into semantic labels. Experimental results show that the proposed method outperforms state-of-the-art ones in terms of visual quality and quantitative measurements. Furthermore, we achieve elaborate spatial style editing by adjusting style codes.
翻译:图像合成的现有方法使用基于堆叠变化和集合层的样式编码器来生成输入图像的样式编码。 但是, 编码矢量不一定包含相应图像的本地信息, 因为小型天体往往会通过这种降尺度程序“ 冲刷 ” 。 在本文中, 我们提议与超级像素基样式编码的深度合成, 名为 SuperStyleNet 。 首先, 我们直接从原始图像中提取基于超级像素的样式编码, 以考虑本地对象 。 其次, 我们根据图形分析恢复了矢量化样式编码中的空间关系。 因此, 所拟议的网络通过将样式编码映射成语义标签, 实现了高质量的图像合成。 实验结果显示, 在视觉质量和定量测量方面, 拟议的方法优于艺术状态。 此外, 我们通过调整样式编码实现精心设计的空间样式编辑。