Program classification can be regarded as a high-level abstraction of code, laying a foundation for various tasks related to source code comprehension, and has a very wide range of applications in the field of software engineering, such as code clone detection, code smell classification, defects classification, etc. The cross-language program classification can realize code transfer in different programming languages, and can also promote cross-language code reuse, thereby helping developers to write code quickly and reduce the development time of code transfer. Most of the existing studies focus on the semantic learning of the code, whilst few studies are devoted to cross-language tasks. The main challenge of cross-language program classification is how to extract semantic features of different programming languages. In order to cope with this difficulty, we propose a Unified Abstract Syntax Tree (namely UAST in this paper) neural network. In detail, the core idea of UAST consists of two unified mechanisms. First, UAST learns an AST representation by unifying the AST traversal sequence and graph-like AST structure for capturing semantic code features. Second, we construct a mechanism called unified vocabulary, which can reduce the feature gap between different programming languages, so it can achieve the role of cross-language program classification. Besides, we collect a dataset containing 20,000 files of five programming languages, which can be used as a benchmark dataset for the cross-language program classification task. We have done experiments on two datasets, and the results show that our proposed approach outperforms the state-of-the-art baselines in terms of four evaluation metrics (Precision, Recall, F1-score, and Accuracy).


翻译:程序分类可以被视为一种高层次的代码抽象,为与源代码理解有关的各种任务奠定基础,并且具有软件工程领域非常广泛的应用,例如代码克隆检测、代码嗅觉分类、缺陷分类等。跨语言程序分类可以实现不同编程语言的代码传输,还可以促进跨语言代码再利用,从而帮助开发者快速编写代码并减少代码传输的开发时间。大多数现有研究侧重于代码的语义学习,而用于跨语言任务的研究则很少。跨语言程序分类的主要挑战是如何提取不同编程语言的语义学特征。为了应对这一困难,我们提议了一个统一的简易语系树(本文中的 UAST ) 神经网络。 详细来说, UAST 的核心理念包括两个统一的机制。 首先, UAST 通过统一AST Transiversal 序列和像图表一样的 AST 结构来采集语系代码特征。 其次,我们构建了一个叫做统一的词汇学的机制,这个机制可以减少我们所使用的不同语言的语系之间的语系 。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年1月20日
A Survey on Data Augmentation for Text Classification
Arxiv
18+阅读 · 2021年6月10日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员