Pre training of language models on large text corpora is common practice in Natural Language Processing. Following, fine tuning of these models is performed to achieve the best results on a variety of tasks. In this paper we question the common practice of only adding a single output layer as a classification head on top of the network. We perform an AutoML search to find architectures that outperform the current single layer at only a small compute cost. We validate our classification architecture on a variety of NLP benchmarks from the GLUE dataset.
翻译:暂无翻译