Understanding the effect of a particular treatment or a policy pertains to many areas of interest, ranging from political economics, marketing to healthcare. In this paper, we develop a non-parametric algorithm for detecting the effects of treatment over time in the context of Synthetic Controls. The method builds on counterfactual predictions from many algorithms without necessarily assuming that the algorithms correctly capture the model. We introduce an inferential procedure for detecting treatment effects and show that the testing procedure is asymptotically valid for stationary, beta mixing processes without imposing any restriction on the set of base algorithms under consideration. We discuss consistency guarantees for average treatment effect estimates and derive regret bounds for the proposed methodology. The class of algorithms may include Random Forest, Lasso, or any other machine-learning estimator. Numerical studies and an application illustrate the advantages of the method.
翻译:理解特定治疗或政策的影响涉及许多感兴趣的领域,从政治经济学、营销到医疗保健等,我们在本文件中开发了一种非参数算法,用于在合成控制背景下检测治疗的长期影响。这种方法基于许多算法的反事实预测,而不一定假定算法正确捕捉了模型。我们引入了一种推断程序来检测治疗效果,并表明测试程序对固定的、乙型混合过程没有限制审议中的一套基本算法。我们讨论了平均治疗效果估计的一致性保障,并得出拟议方法的遗憾界限。算法类别可能包括随机森林、激光索或任何其他机学测算器。数值研究和应用说明了该方法的优点。