We propose a new algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We describe the complexity of our algorithm in terms of the multigraded regularity of a multihomogeneous ideal. We prove effective bounds for many formats and ranks and conjecture a general formula. These bounds are of independent interest for overconstrained polynomial system solving. Our experiments show that our algorithm can outperform state-of-the-art algebraic algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
翻译:我们提出一种新的算法,用于计算受级限和通用限制的高阶高压高压高压分解或高压分解。将它改制为多式方程式系统,使我们能够从计算代数几何学中利用最近的数字线性代数工具。我们用多异性理想的多级常规性来描述我们的算法的复杂性。我们证明许多格式和等级的有效界限,并推断出一种通用公式。这些界限对于过度控制的多边混合系统解决具有独立的利益。我们的实验表明,从精确度、计算时间和记忆消耗的角度,我们的算法可以超越先进的代数算法。