A successful application of quantum annealing to machine learning is training restricted Boltzmann machines (RBM). However, many neural networks for vision applications are feedforward structures, such as multilayer perceptrons (MLP). Backpropagation is currently the most effective technique to train MLPs for supervised learning. This paper aims to be forward-looking by exploring the training of MLPs using quantum annealers. We exploit an equivalence between MLPs and energy-based models (EBM), which are a variation of RBMs with a maximum conditional likelihood objective. This leads to a strategy to train MLPs with quantum annealers as a sampling engine. We prove our setup for MLPs with sigmoid activation functions and one hidden layer, and demonstrated training of binary image classifiers on small subsets of the MNIST and Fashion-MNIST datasets using the D-Wave quantum annealer. Although problem sizes that are feasible on current annealers are limited, we obtained comprehensive results on feasible instances that validate our ideas. Our work establishes the potential of quantum computing for training MLPs.
翻译:成功将量子退火应用于机器学习的一种方法是训练受限玻尔兹曼机(RBM)。但是,许多用于视觉应用的神经网络是前馈结构,例如多层感知机(MLP)。目前,反向传播是训练MLP进行监督学习的最有效技术。本文旨在通过探索使用量子退火器对MLP进行培训来展望未来。我们利用MLP和基于能量的模型(EBM)之间的等价性,EBM是一种具有最大条件似然目标的RBM变体。这导致了一种使用量子退火器作为采样引擎对MLP进行培训的策略。我们证明了我们的MLP设置与具有sigmoid激活函数和一个隐藏层的问题,并展示了在MNIST和时尚MNIST数据集的小子集上使用D-Wave量子退火器进行二进制图像分类器的训练。尽管目前量子计算机处理的问题大小有限,但我们在可行的实例上获得了全面的结果,证实了我们的想法。我们的工作确定了量子计算机培训MLP的潜力。