Calude et al. have recently shown that parity games can be solved in quasi-polynomial time, a landmark result that has led to a number of approaches with quasi-polynomial complexity. Jurdinski and Lasic have further improved the precise complexity of parity games, especially when the number of priorities is low (logarithmic in the number of positions). Both of these algorithms belong to a class of game solving techniques now often called separating automata: deterministic automata that can be used as witness automata to decide the winner in parity games up to a given number of states and colours. We suggest a number of adjustments to the approach of Calude et al. that lead to smaller statespaces. These include and improve over those earlier introduced by Fearnley et al. We identify two of them that, together, lead to a statespace of exactly the same size Jurdzinski and Lasic's concise progress measures, which currently hold the crown as smallest statespace. The remaining improvements, hence, lead to a further reduction in the size of the statespace, making our approach the most succinct progress measures available for parity games.


翻译:Calude等人最近表明,平等游戏可以在准极化时间解决,这是一个里程碑式的结果,导致了一系列具有准极化复杂性的办法。Jurdinski和Lasic进一步提高了对等游戏的精确复杂性,特别是在优先事项数量低的情况下(职位数目的对数)。这两种算法都属于目前通常称为分离自动式的游戏解决技术类别:确定性自动数据,可以用作见证性自动数据,在一定数量的国家和颜色上决定对等游戏的优胜者。我们建议对Calude et al(Calude et al)的方法进行一些调整,从而导致州空间的缩小。这些调整包括并改进了Wafrenley 等人(Afreenley et al)早先提出的那些调整。我们找出了其中两个算法,这两个算法共同导致一个与Jurdzinski和Lasic(Lasic)简洁的进度衡量标准完全一样的状态空间,目前以最小的状态空间为顶峰。因此,其余的改进导致州空间的面积进一步缩小,使我们的面积成为了为平等游戏最简洁的措施。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月18日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
0+阅读 · 2022年6月15日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员