Self-supervised model pre-training has recently garnered significant interest, but relatively few efforts have explored using additional resources in fine-tuning these models. We demonstrate how universal phoneset acoustic models can leverage cross-lingual supervision to improve transfer of pretrained self-supervised representations to new languages. We also show how target-language text can be used to enable and improve fine-tuning with the lattice-free maximum mutual information (LF-MMI) objective. In three low-resource languages these techniques greatly improved few-shot learning performance.


翻译:最近,自我监督的训练前示范模式引起了极大的兴趣,但探索利用额外资源微调这些模式的努力相对较少。我们展示了通用电话声学模型如何利用跨语言监督来改进将事先经过训练的自我监督的演示转变为新语言。我们还展示了如何利用目标语言文本来促成和改进与无线最大相互信息(LF-MMI)目标的微调。在三种低资源语言中,这些技术大大提高了微小的学习成绩。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
5+阅读 · 2017年10月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员