Let $P$ be a crossing-free polygon and $\mathcal C$ a set of shortcuts, where each shortcut is a directed straight-line segment connecting two vertices of $P$. A shortcut hull of $P$ is another crossing-free polygon that encloses $P$ and whose oriented boundary is composed of elements from $\mathcal C$. Shortcut hulls find their application in geo-related problems such as the simplification of contour lines. We aim at a shortcut hull that linearly balances the enclosed area and perimeter. If no holes in the shortcut hull are allowed, the problem admits a straight-forward solution via shortest paths. For the more challenging case that the shortcut hull may contain holes, we present a polynomial-time algorithm that is based on computing a constrained, weighted triangulation of the input polygon's exterior. We use this problem as a starting point for investigating further variants, e.g., restricting the number of edges or bends. We demonstrate that shortcut hulls can be used for drawing the rough extent of point sets as well as for the schematization of polygons.
翻译:让$P$成为无跨多边形和$$mathcal C$的捷径, 每条捷径都是一条直接直线段, 连接两顶顶部的一条直线路段。 捷径船体是另一块无跨线多边形, 包含$P$, 其方向边界由$\mathcal C$的元素组成。 捷径船体在诸如简化等地质相关问题中发现其应用。 我们瞄准的捷径船体, 直线平衡封闭区和周边。 如果允许捷径船体上没有洞孔, 问题就会通过最短的路径出现直向前的解决方案 。 对于捷径船体可能包含洞的更具挑战性的情况, 我们提出一种多边时间算法, 其基础是计算出输入多边形外表的受限加权三角。 我们用这个问题作为起点, 进一步调查变体, 例如, 限制边缘或弯曲数 。 我们证明, 捷径船体可以用来绘制最粗的点范围, 以及多边形的正形化。