In the online balanced graph repartitioning problem, one has to maintain a clustering of $n$ nodes into $\ell$ clusters, each having $k = n / \ell$ nodes. During runtime, an online algorithm is given a stream of communication requests between pairs of nodes: an inter-cluster communication costs one unit, while the intra-cluster communication is free. An algorithm can change the clustering, paying unit cost for each moved node. This natural problem admits a simple $O(\ell^2 \cdot k^2)$-competitive algorithm COMP, whose performance is far apart from the best known lower bound of $\Omega(\ell \cdot k)$. One of open questions is whether the dependency on $\ell$ can be made linear; this question is of practical importance as in the typical datacenter application where virtual machines are clustered on physical servers, $\ell$ is of several orders of magnitude larger than $k$. We answer this question affirmatively, proving that a simple modification of COMP is $(\ell \cdot 2^{O(k)})$-competitive. On the technical level, we achieve our bound by translating the problem to a system of linear integer equations and using Graver bases to show the existence of a ``small'' solution.


翻译:在在线平衡图再分配问题中,人们需要将美元节点组合成美元= ell美元组合,每个节点都有美元= n /\ ell $ 节点。 在运行期间, 给在线算法提供对结点之间一系列通信请求: 组合间通信费用为1个单位, 而集群内通信是免费的。 算法可以改变组合, 支付每个移动节点的单位成本。 这个自然问题承认了一个简单的美元( ell=2\ cdot k% 2), 具有竞争力的算法 Comp Comp, 其性能远远不同于最已知的美元= omega (ell\\\ cdot k) 。 一个尚未解决的问题是, 对$\ ell 的依赖能否成为线性; 这个问题具有实际重要性, 因为在典型的数据中心应用程序中, 虚拟机器被组合在物理服务器上, $\ ell$ 是几个比 $k$ 更大的数量。 我们肯定地回答这个问题, 能够证明, Compaticle mang a rial deal deal lemental le lemental develop lemental lexal lexal lexal lement lement lements legroqut lex lement legreal legropal lex legal lexxild lex lex lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年9月22日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员