We consider the problem of drawing an outerplanar graph with $n$ vertices with at most one bend per edge if the outer face is already drawn as a simple polygon. We prove that it can be decided in $O(nm)$ time if such a drawing exists, where $m\le n-3$ is the number of interior edges. In the positive case, we can also compute such a drawing.
翻译:我们认为,如果外表已经作为一个简单的多边形被画成,则绘制外平面图的问题就在于,如果外平面已经作为一个简单的多边形,则外平面最多有一个弯曲的圆顶值为一美元。我们证明,如果有这样的图画,可以用O(nm)美元的时间来决定,其中内平面数是$m\le n-3美元。在正面的例子中,我们也可以计算出这样的图画。