We use model-theoretic tools originating from stability theory to derive a result we call the Finitary Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class C, and using a first-order formula {\phi} with parameters we are able to define, in every graph G in C, a relation R that satisfies some hereditary first-order assertion {\psi}. Then we are able to find a first-order formula {\phi}' that has the same property, but additionally is finitary: there is finite bound k such that in every graph G in C, different choices of parameters give only at most k different relations R that can be defined using {\phi}'. We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain canonical decompositions in classes of well-structured graphs. - We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the Flipper game, which characterizes monadically stable graph classes, there is a winning strategy for Splitter, respectively Flipper, that can be defined in first-order logic from the game history. Thus, the strategy is canonical. - We show that for any fixed graph class C of bounded shrubdepth, there is an O(n^2)-time algorithm that given an n-vertex graph G in C, computes in an isomorphism-invariant way a structure H of bounded treedepth in which G can be interpreted. A corollary of this result is an O(n^2)-time isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.
翻译:我们使用来自稳定理论的模型理论工具来得出一个结果, 我们称之为 Finitary 替代品 Lemma, 它直观地说如下。 假设我们在一个稳定的图形类C 中工作, 并且使用一阶公式 公式 和参数, 我们可以在每一个图形 G 在 C 中定义一个符合某些遗传性的第一阶主张 的 R 关系 。 然后我们就可以找到一个具有相同属性的第一阶公式, 但另外的深度是 原始的 : 在每张图形 G 在 C 中, 不同的参数选择只能给大多数 k 的正弦结构 R, 并且可以用 \phi} 来定义。 我们用 Finitary 替代公式 来给出关于存在某些精密的图形类中 。 我们证明, 在 Splitter 游戏中, 给不曾给人以精确的图形类, 而 Flipper 游戏中, 具有单调的图形类中, 一个在 Slipterral 中, 可以给 Slipperrder 解释 。</s>