Unmanned aerial vehicle (UAV) has recently attracted a lot of attention as a candidate to meet the 6G ubiquitous connectivity demand and boost the resiliency of terrestrial networks. Thanks to the high spectral efficiency and low latency, non-orthogonal multiple access (NOMA) is a potential access technique for future communication networks. In this paper, we propose to use the UAV as a moving base station (BS) to serve multiple users using NOMA and jointly solve for the 3D-UAV placement and resource allocation problem. Since the corresponding optimization problem is non-convex, we rely on the recent advances in artificial intelligence (AI) and propose AdaptSky, a deep reinforcement learning (DRL)-based framework, to efficiently solve it. To the best of our knowledge, AdaptSky is the first framework that optimizes NOMA power allocation jointly with 3D-UAV placement using both sub-6GHz and millimeter wave mmWave spectrum. Furthermore, for the first time in NOMA-UAV networks, AdaptSky integrates the dueling network (DN) architecture to the DRL technique to improve its learning capabilities. Our findings show that AdaptSky does not only exhibit a fast-adapting learning and outperform the state-of-the-art baseline approach in data rate and fairness, but also it generalizes very well. The AdaptSky source code is accessible to use here: https://github.com/Fouzibenfaid/AdaptSky


翻译:无人驾驶航空飞行器(UAV)最近作为候选者吸引了大量关注,以满足6G无处不在的连通需求,并提升地面网络的恢复能力。由于光谱效率高且低纬度,因此未来通信网络的潜在接入技术是非横向多存(NOMA)。在本文中,我们提议使用UAV作为移动基地站(BS)为多个用户提供服务,使用NOMA(NOMA)和3D-UAV(3D-UAV)定位和资源分配问题共同解决。由于相应的优化问题是非康维x,我们依靠人工智能(AI)的最新进展,并提议一个基于SDandSky的深度强化学习(DRL)框架,以有效解决这一问题。根据我们的知识,SdadSky是第一个使用3D-UAVAV(3D-UAV)联合定位,使用5GH和毫米波波波谱,为多个用户服务。此外,由于NOMA-UAV(UAV)网络的首次将相应网络(DN)整合,但不包括DRBY(D-N)网络结构,因此,我们建议的Sky-DS-DRDRBY(DRDR)结构结构结构也显示其快速学习速度方法的快速学习能力。我们的数据-S-S-S-stalmadrodustry-st-st-st-dalmadaldaldal-st)。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员