Cellular traffic prediction is an indispensable part for intelligent telecommunication networks. Nevertheless, due to the frequent user mobility and complex network scheduling mechanisms, cellular traffic often inherits complicated spatial-temporal patterns, making the prediction incredibly challenging. Although recent advanced algorithms such as graph-based prediction approaches have been proposed, they frequently model spatial dependencies based on static or dynamic graphs and neglect the coexisting multiple spatial correlations induced by traffic generation. Meanwhile, some works lack the consideration of the diverse cellular traffic patterns, result in suboptimal prediction results. In this paper, we propose a novel deep learning network architecture, Adaptive Hybrid Spatial-Temporal Graph Neural Network (AHSTGNN), to tackle the cellular traffic prediction problem. First, we apply adaptive hybrid graph learning to learn the compound spatial correlations among cell towers. Second, we implement a Temporal Convolution Module with multi-periodic temporal data input to capture the nonlinear temporal dependencies. In addition, we introduce an extra Spatial-Temporal Adaptive Module to conquer the heterogeneity lying in cell towers. Our experiments on two real-world cellular traffic datasets show AHSTGNN outperforms the state-of-the-art by a significant margin, illustrating the superior scalability of our method for spatial-temporal cellular traffic prediction.
翻译:然而,由于用户频繁流动和复杂的网络排期机制,细胞交通往往会继承复杂的时空空间模式,从而使得预测具有巨大的挑战性。尽管最近提出了基于图形的预测方法等先进的算法,但它们经常以静态或动态图形为基础模拟空间依赖,忽视了由交通生成引发的共存的多种空间相关性。与此同时,有些工作缺乏对不同细胞交通模式的考虑,从而导致低于最佳的预测结果。在本文中,我们提出一个新的深层次学习网络结构,即适应性混合空间-时空图神经网络(AHSTGNN),以解决细胞交通预测问题。首先,我们应用适应性混合图学习来学习细胞塔之间的复合空间相关性。第二,我们实施一个带有多周期时间数据输入的时温和相调模块来捕捉非线性时间依赖性。此外,我们引入了一个超时空适应性适应模块,以征服细胞塔中的异性遗传性。我们在两个现实-混合空间-时空图模型上的实验,我们用两个现实-移动性混合图学习了细胞空间空间预测方法,以显示A-STGNS-S-S-S-S-SQSimal-Smodromoudststst St-Sy</s>