The number of embeddings of a partially ordered set $S$ in a partially ordered set $T$ is the number of subposets of $T$ isomorphic to $S$. If both, $S$ and $T$, have only one unique maximal element, we define good embeddings as those in which the maximal elements of $S$ and $T$ overlap. We investigate the number of good and all embeddings of a rooted poset $S$ in the family of all binary trees on $n$ elements considering two cases: plane (when the order of descendants matters) and non-plane. Furthermore, we study the number of embeddings of a rooted poset $S$ in the family of all planted plane trees of size $n$. We derive the asymptotic behaviour of good and all embeddings in all cases and we prove that the ratio of good embeddings to all is of the order $\Theta(1/\sqrt{n})$ in all cases, where we provide the exact constants. Furthermore, we show that this ratio is non-decreasing with $S$ in the plane binary case and asymptotically non-decreasing with $S$ in the non-plane binary case and in the planted plane case. Finally, we comment on the case when $S$ is disconnected.


翻译:部分定购的美元中部分定购的S美元,部分定购的T$的嵌入数量是美元对美元。如果美元和美元都只有一个独有的最大元素,我们定义好的嵌入数量是美元和美元的最大元素重叠的嵌入数量。我们调查在所有二进制树的家庭中,所有二进制树元素中,在美元部分定购的固定的S$的嵌入数量和所有嵌入数量,考虑到两个案例:平面(当后代的顺序)和非平板。此外,我们研究在所有规模为$的植树中嵌入根的美元和美元,如果两者都有一个独特的最大元素,我们定义了良好的嵌入数量和所有嵌入的所有嵌入数量。我们调查了在所有案例中,良好嵌入与所有元素的嵌入比例为$(1/sqrt{n},在所有案例中,我们提供了精确的常数。此外,我们还研究一个纯正的嵌入比例是非平面的。我们证明这个比例是非平式的,最终是平式的,在不平式案例上是正式的。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年8月9日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员