Given a set of $n$ red and $n$ blue points in the plane, we are interested in matching red points with blue points by straight line segments so that the segments do not cross. We develop a range of tools for dealing with the non-crossing matchings of points in convex position. It turns out that the points naturally partition into groups that we refer to as orbits, with a number of properties that prove useful for studying and efficiently processing the non-crossing matchings. Bottleneck matching is such a matching that minimizes the length of the longest segment. Illustrating the use of the developed tools, we solve the problem of finding bottleneck matchings of points in convex position in $O(n^2)$ time. Subsequently, combining our tools with a geometric analysis we design an $O(n)$-time algorithm for the case where the given points lie on a circle. Previously best known results were $O(n^3)$ for points in convex position, and $O(n \log n$) for points on a circle.


翻译:鉴于飞机上有一套红点和蓝点,我们有兴趣通过直线段将红点与蓝点对齐,以使各段不交叉。我们开发了一系列工具,处理锥形位置各点的非交叉匹配问题。结果发现,各点自然分割成我们称为轨道的一组,有若干属性证明有助于研究和高效处理非交叉匹配。瓶颈匹配是一种匹配,可以最大限度地减少最长段的长度。在使用开发工具时,我们用$(n)2美元的时间解决找到锥形位置各点的瓶颈匹配问题。随后,将我们的工具与几何分析结合起来,我们设计出一个美元(n)-时间的算法,用于圆形上特定点所在的情况。以前已知的最佳结果是,对锥形位置的值为$(n)3美元,对圆形点的值为$(n)-美元。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
6+阅读 · 2021年6月4日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
多目标的强化学习教程
CreateAMind
4+阅读 · 2018年1月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员