We consider the problem of untangling a given (non-planar) straight-line circular drawing $\delta_G$ of an outerplanar graph $G=(V, E)$ into a planar straight-line circular drawing by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph $G$, it is clear that such a crossing-free circular drawing always exists and we define the circular shifting number shift$(\delta_G)$ as the minimum number of vertices that are required to be shifted in order to resolve all crossings of $\delta_G$. We show that the problem Circular Untangling, asking whether shift$(\delta_G) \le K$ for a given integer $K$, is NP-complete. For $n$-vertex outerplanar graphs, we obtain a tight upper bound of shift$(\delta_G) \le n - \lfloor\sqrt{n-2}\rfloor -2$. Based on these results we study Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all the crossings. In this case, we provide a tight upper bound shift$(\delta_G) \le \lfloor \frac{n}{2} \rfloor-1$ and present a constructive polynomial-time algorithm to compute the circular shifting number of almost-planar drawings.
翻译:我们考虑的是将给定( 非平面) 直线环形图解开问题, 将 $\ delta_ G$ 的外平面图形 $G=( V, E) 的 delta_ G$ 绘制成平面直线环状图, 将最小的顶部数移到圆圈上方位置。 对于外平面图$G$, 显而易见的是, 这种无跨面环形图总是存在, 我们把圆形数字转换值转换值( delta_ G) 确定为解决 $\ delta_ ( G) ( G) 外平面平面图) 所需的最低数额 。 根据这些结果, 我们研究的圆形分页值( delta_ G)\ le K$ ( lelegal_ explanargal), 提供当前所有移动平面平面平面图的上方位数。