In this paper we present new arithmetical and algebraic results following the work of Babindamana and al. on hyperbolas and describe from the new results an approach to attacking a RSA-type modulus based on continued fractions, independent and not bounded by the size of the private key $d$ nor public exponent $e$ compared to Wiener's attack. When successful, this attack is bounded by $\displaystyle\mathcal{O}\left( b\log{\alpha_{j4}}\log{(\alpha_{i3}+\alpha_{j3})}\right)$ with $b=10^{y}$, $\alpha_{i3}+\alpha_{j3}$ a non trivial factor of $n$ and $\alpha_{j4}$ such that $(n+1)/(n-1)=\alpha_{i4}/\alpha_{j4}$. The primary goal of this attack is to find a point $\displaystyle X_{\alpha}=\left(-\alpha_{3}, \ \alpha_{3}+1 \right) \in \mathbb{Z}^{2}_{\star}$ that satisfies $\displaystyle\left\langle X_{\alpha_{3}}, \ P_{3} \right\rangle =0$ from a convergent of $\displaystyle\frac{\alpha_{i4}}{\alpha_{j4}}+\delta$, with $P_{3}\in \mathcal{B}_{n}(x, y)_{\mid_{x\geq 4n}}$. We finally present some experimental examples. We believe these results constitute a new direction in RSA Cryptanalysis using continued fractions.


翻译:---- 本文在双曲线与Babindamana等人的工作基础上,提出了新的算术和代数结果,并描述了一种基于连分数的攻击RSA类型模数的方法,该方法不受私钥$d$或公钥指数$e$的大小限制,相比于Wiener的攻击方法更为独立。成功时,该攻击的边界为$\displaystyle\mathcal{O}\left( b\log{\alpha_{j4}}\log{(\alpha_{i3}+\alpha_{j3})}\right)$,其中$b=10^{y}$,$\alpha_{i3}+\alpha_{j3}$是$n$的非平凡因子,$\alpha_{j4}$满足$(n+1)/(n-1)=\alpha_{i4}/\alpha_{j4}$。该攻击的主要目标是从$\displaystyle\frac{\alpha_{i4}}{\alpha_{j4}}+\delta$的收敛式中找到一个点$\displaystyle X_{\alpha}=\left(-\alpha_{3}, \ \alpha_{3}+1 \right) \in \mathbb{Z}^{2}_{\star}$,使得$\displaystyle\left\langle X_{\alpha_{3}}, \ P_{3} \right\rangle =0$,其中$P_{3}\in \mathcal{B}_{n}(x, y)_{\mid_{x\geq 4n}}$。最后,我们提供了一些实验例子。我们相信这些结果是使用连分数进行RSA密码分析的一个新方向。

0
下载
关闭预览

相关内容

RSA( RSA (algorithm), Ron Rivest, Adi Shamir and Leonard Adleman )以三位创始人的名字命名。安全性基于有效的素数分解算法的不存在。以安全的非对称加密充当了现代密码体系的骨干。
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员