Social network users are commonly connected to hundreds or even thousands of other users. However, these ties are not all of equal strength; for example, we often are connected to good friends or family members as well as acquaintances. Inferring the tie strengths is an essential task in social network analysis. Common approaches classify the ties into strong and weak edges based on the network topology using the strong triadic closure (STC). The STC states that if for three nodes, $\textit{A}$, $\textit{B}$, and $\textit{C}$, there are strong ties between $\textit{A}$ and $\textit{B}$, as well as $\textit{A}$ and $\textit{C}$, there has to be a (weak or strong) tie between $\textit{B}$ and $\textit{C}$. Moreover, a variant of the STC called STC+ allows adding new weak edges to obtain improved solutions. Recently, the focus of social network analysis has been shifting from single-layer to multilayer networks due to their ability to represent complex systems with multiple types of interactions or relationships in multiple social network platforms like Facebook, LinkedIn, or X (formerly Twitter). However, straightforwardly applying the STC separately to each layer of multilayer networks usually leads to inconsistent labelings between layers. Avoiding such inconsistencies is essential as they contradict the idea that tie strengths represent underlying, consistent truths about the relationships between users. Therefore, we adapt the definitions of the STC and STC+ for multilayer networks and provide ILP formulations to solve the problems exactly. Solving the ILPs is computationally costly; hence, we additionally provide an efficient 2-approximation for the STC and a 6-approximation for the STC+ minimization variants. The experiments show that, unlike standard approaches, our new highly efficient algorithms lead to consistent strong/weak labelings of the multilayer network edges.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月1日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年11月1日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员