Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine. The limited angle coverage in LACT is often a dominant source of severe artifacts in the reconstructed images, making it a challenging inverse problem. We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior. Diffusion models are a recent class of deep generative models that are relatively easy to train due to their implementation as image denoisers. DOLCE can form high-quality images from severely under-sampled data by integrating data-consistency updates with the sampling updates of a diffusion model, which is conditioned on the transformed limited-angle data. We show through extensive experimentation on several challenging real LACT datasets that, the same pre-trained DOLCE model achieves the SOTA performance on drastically different types of images. Additionally, we show that, unlike standard LACT reconstruction methods, DOLCE naturally enables the quantification of the reconstruction uncertainty by generating multiple samples consistent with the measured data.
翻译:在从安全到医学的各种应用中,使用有限角度的成像法是一种非破坏性的评估技术,从安全到医学等各种应用中,使用有限角度的成像法的覆盖范围有限,往往是再造图像中严重文物的主要来源,因而成为具有挑战性的反向问题。我们介绍了LACT的一个新的深层次模型框架DOLCE, 该框架以前使用一个有条件的传播模型作为图像。 Difmission 模型是最近一类深层次的基因化模型,由于它们作为图像隐蔽器的采用,因此比较容易加以培训。DOLCE通过将数据一致性更新与一个以变化的有限角数据为条件的传播模型的抽样更新结合起来,可以形成从严重不足的数据中产生高质量的图像。我们通过对若干具有挑战性的实际LACT数据集进行广泛的实验,通过同样的预先训练的DOLCE模型在非常不同的图像类型上取得SOTA的性能。此外,我们表明DOLCE与标准的LCE重建方法不同,通过生成与测量的数据相符的多个样品,自然能够对重建的不确定性进行量化。