We have recently seen tremendous progress in neural rendering (NR) advances, i.e., NeRF, for photo-real free-view synthesis. Yet, as a local technique based on a single computer/GPU, even the best-engineered Instant-NGP or i-NGP cannot reach real-time performance when rendering at a high resolution, and often requires huge local computing resources. In this paper, we resort to cloud rendering and present NEPHELE, a neural platform for highly realistic cloud radiance rendering. In stark contrast with existing NR approaches, our NEPHELE allows for more powerful rendering capabilities by combining multiple remote GPUs and facilitates collaboration by allowing multiple people to view the same NeRF scene simultaneously. We introduce i-NOLF to employ opacity light fields for ultra-fast neural radiance rendering in a one-query-per-ray manner. We further resemble the Lumigraph with geometry proxies for fast ray querying and subsequently employ a small MLP to model the local opacity lumishperes for high-quality rendering. We also adopt Perfect Spatial Hashing in i-NOLF to enhance cache coherence. As a result, our i-NOLF achieves an order of magnitude performance gain in terms of efficiency than i-NGP, especially for the multi-user multi-viewpoint setting under cloud rendering scenarios. We further tailor a task scheduler accompanied by our i-NOLF representation and demonstrate the advance of our methodological design through a comprehensive cloud platform, consisting of a series of cooperated modules, i.e., render farms, task assigner, frame composer, and detailed streaming strategies. Using such a cloud platform compatible with neural rendering, we further showcase the capabilities of our cloud radiance rendering through a series of applications, ranging from cloud VR/AR rendering.
翻译:我们最近看到神经造影(NRR)进步的巨大进步,即NeRF(NERF ), 用于光-真实的免费合成。然而,由于基于单一计算机/ GPU的本地技术,即使是最优化设计的 Instant-NGP 或 i-NGP(i-NGP) 也无法在高分辨率时达到实时性能,而且常常需要巨大的本地计算资源。在本文中,我们使用云造影和展示NEPHELE(NEPHELE),这是一个非常现实的云光亮化平台。与现有的NRR(NR)方法形成鲜明对比,我们的NEPHELE(NE) 能够让多个远程GP(GP) 组合组合组合组合,让多个人同时观看NERF的场景。我们引入i-NOLF(i-NO) 来使用超快度光度光度光度光度的光度光度光度场,我们进一步使用微光度模型来模拟本地的极地极地极地极极地滚流/直观,,我们更精确的光度流的光度平台,我们更接近地平面的光度的光度的光度,我们用直向的光度的光量的光量化的光量的光量化的光学平台, 展示平台, 展示的光量的光度, 展示的光度的光度, 展示的光度, 展示的光度,让我们的光度, 展示的光度的光度-直径直径直向的轨道的运行的轨道的轨道的轨道的轨道的运行的运行的轨道的运行的运行的运行的轨道的运行的运行的轨道的轨, 展示的轨道的轨道的轨道的运行的轨道的轨道的运行的轨道的轨道的轨道, 展示,让我们的轨道的轨道的轨道的轨道的轨道的轨道的轨道的轨道的轨道的运行,让我们的轨道的轨道的轨道的轨道的轨道的轨道的轨道的轨道的轨道的运行的运行的运行的运行的轨道的轨道的运行的运行的运行的运行的运行的运行,让我们的轨道的轨道的运行的轨道的轨道的运行的运行,让我们的运行的运行, </s>