We present a construction of partial spread bent functions using subspaces generated by linear recurring sequences (LRS). We first show that the kernels of the linear mappings defined by two LRS have a trivial intersection if and only if their feedback polynomials are relatively prime. Then, we characterize the appropriate parameters for a family of pairwise coprime polynomials to generate a partial spread required for the support of a bent function, showing that such families exist if and only if the degrees of the underlying polynomials is either $1$ or $2$. We then count the resulting sets of polynomials and prove that for degree $1$, our LRS construction coincides with the Desarguesian partial spread. Finally, we perform a computer search of all $\mathcal{PS}^-$ and $\mathcal{PS}^+$ bent functions of $n=8$ variables generated by our construction and compute their 2-ranks. The results show that many of these functions defined by polynomials of degree $b=2$ are not EA-equivalent to any Maiorana-McFarland or Desarguesian partial spread function.
翻译:我们使用线性重复序列生成的子空格来构造部分分散的弯曲函数。 我们首先显示, 由两个 LRS 定义的线性绘图的内核有一个微不足道的交叉点, 前提是它们的反馈是相对重要的。 然后, 我们确定一个对称组合组合组合组合的合适参数, 以产生支持弯曲函数所需的部分分散值, 显示这些家族的存在, 前提是其基础多面形的温度为1美元或2美元。 我们然后计算由此产生的多面形图, 并证明对于等级而言, 我们的 LRS 构造与Desarguesian 部分分布相吻合。 最后, 我们用电脑搜索所有$\ mathcal{PS ⁇ - $ 和 $\ macal{pace{pace} 折线形函数, 以 $n=8$ 的变量产生, 并计算其 2级变量。 结果显示, 这些由 $b=2 美元 的多面形组合定义的函数中有许多功能不是 EA- 等同任何 Aiorana- Marland 或 Degara- degara- degarland 等分函数。