Collection of real world annotations for training semantic segmentation models is an expensive process. Unsupervised domain adaptation (UDA) tries to solve this problem by studying how more accessible data such as synthetic data can be used to train and adapt models to real world images without requiring their annotations. Recent UDA methods applies self-learning by training on pixel-wise classification loss using a student and teacher network. In this paper, we propose the addition of a consistency regularization term to semi-supervised UDA by modelling the inter-pixel relationship between elements in networks' output. We demonstrate the effectiveness of the proposed consistency regularization term by applying it to the state-of-the-art DAFormer framework and improving mIoU19 performance on the GTA5 to Cityscapes benchmark by 0.8 and mIou16 performance on the SYNTHIA to Cityscapes benchmark by 1.2.


翻译:为培训语义分解模型收集真实世界注释是一个昂贵的过程。 不受监督的域适应(UDA)试图解决这个问题,研究如何利用合成数据等更便捷的数据培训和使模型适应真实世界图像而无需附加说明。 最近的UDA方法采用自学方法,通过使用学生和教师网络进行像素分类损失培训。 在本文中,我们提议在半受监督的UDA中增加一个一致性正规化术语,为网络产出各要素之间的像素关系建模。 我们通过将这一拟议的一致性正规化术语应用到最新的DAFormer框架,并通过将GTA5的MIOU19性能应用于城市景基准,在SYNTHIA到城市景基准上提高0. 8 和 mIou16性能,在1.2 城市景点基准上提高MIOU19性能,从而证明拟议的一致性正规化术语的有效性。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员