Design and operation of complex engineering systems rely on reliability optimization. Such optimization requires us to account for uncertainties expressed in terms of compli-cated, high-dimensional probability distributions, for which only samples or data might be available. However, using data or samples often degrades the computational efficiency, particularly as the conventional failure probability is estimated using the indicator function whose gradient is not defined at zero. To address this issue, by leveraging the buffered failure probability, the paper develops the buffered optimization and reliability method (BORM) for efficient, data-driven optimization of reliability. The proposed formulations, algo-rithms, and strategies greatly improve the computational efficiency of the optimization and thereby address the needs of high-dimensional and nonlinear problems. In addition, an analytical formula is developed to estimate the reliability sensitivity, a subject fraught with difficulty when using the conventional failure probability. The buffered failure probability is thoroughly investigated in the context of many different distributions, leading to a novel measure of tail-heaviness called the buffered tail index. The efficiency and accuracy of the proposed optimization methodology are demonstrated by three numerical examples, which underline the unique advantages of the buffered failure probability for data-driven reliability analysis.


翻译:复杂的工程系统的设计和操作取决于可靠性的优化。这种优化要求我们考虑在精确度、高维概率分布方面表示的不确定性,这些不确定性可能只有样本或数据。然而,使用数据或样本往往会降低计算效率,特别是由于常规故障概率是使用指标函数估算的,其梯度没有被确定为零。为了解决这一问题,文件利用缓冲故障概率,开发了缓冲优化和可靠性方法(BORM),以高效、数据驱动的可靠性优化。拟议的配方、 algo-Rithms和战略大大提高了优化的计算效率,从而满足了高度和非线性问题的需要。此外,还开发了一种分析公式来估计可靠性敏感性,在使用常规故障概率时充满了困难。缓冲故障概率在许多不同的分布中进行了彻底调查,导致一种称为缓冲尾部积分指数的新型测量。拟议优化方法的效率和准确性得到了三个数字示例的证明,这些实例强调了缓冲故障概率分析在数据驱动下的独特优势。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员