Smartphones have become the most used electronic devices. They carry out most of the functionalities of desktops, offering various useful applications that suit the users needs. Therefore, instead of the operator, the user has been the main controller of the device and its applications, therefore its reliability has become an emergent requirement. As a first step, based on collected smartphone applications failure data, we investigated and evaluated the efficacy of Software Reliability Growth Models (SRGMs) when applied to these smartphone data in order to check whether they achieve the same accuracy as in the desktop/laptop area. None of the selected models were able to account for the smartphone data satisfactorily. Their failure is traced back to: (i) the hardware and software differences between desktops and smartphones, (ii) the specific features of mobile applications compared to desktop applications, and (iii) the different operational conditions and usage profiles. Thus, a reliability model suited to smartphone applications is still needed. In the second step, we applied the Weibull and Gamma distributions, and their two particular cases, Rayleigh and S-Shaped, to model the smartphone failure data sorted by application version number and grouped into different time periods. An estimation of the expected number of defects in each application version was obtained. The performances of the distributions were then compared amongst each other. We found that both Weibull and Gamma distributions can fit the failure data of mobile applications, although the Gamma distribution is frequently more suited.


翻译:智能手机已成为最常用的电子设备。 它们运行了台式计算机的大多数功能, 提供了适合用户需要的各种有用的应用程序。 因此, 用户不是操作员, 经常成为该设备及其应用程序的主要控制器, 因此其可靠性已成为一项紧急要求。 作为第一步, 根据所收集的智能手机应用程序故障数据, 我们调查并评估了软件可靠性增长模型(SRGMs)在应用到这些智能手机数据时的功效。 第二步, 我们应用了Weibull和Gamma的分布是否达到与桌面/笔记本区域相同的精确度。 所选模型没有一个能够令人满意地解算出智能手机数据。 它们的失败可追溯到:(i) 台式和智能手机应用程序之间的硬件和软件差异, 因此, 与桌面应用程序故障数据故障相比, 移动应用程序的具体特点和使用情况。 因此, 仍然需要一种适合智能手机应用程序的可靠性模型。 第二步, 我们应用Webull和Gamma的分布, 两个特定案例, Raylele和SShapedt, 它们的智能应用失败数据被追溯到:(i) 每一个应用版本的功能分配周期, 我们的预期版本和数据分布的每个版本的错误都被找到。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A causal view on compositional data
Arxiv
0+阅读 · 2022年1月14日
Translation Certification for Smart Contracts
Arxiv
0+阅读 · 2022年1月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员