In this report, we focus on reconstructing clothed humans in the canonical space given multiple views and poses of a human as the input. To achieve this, we utilize the geometric prior of the SMPLX model in the canonical space to learn the implicit representation for geometry reconstruction. Based on the observation that the topology between the posed mesh and the mesh in the canonical space are consistent, we propose to learn latent codes on the posed mesh by leveraging multiple input images and then assign the latent codes to the mesh in the canonical space. Specifically, we first leverage normal and geometry networks to extract the feature vector for each vertex on the SMPLX mesh. Normal maps are adopted for better generalization to unseen images compared to 2D images. Then, features for each vertex on the posed mesh from multiple images are integrated by MLPs. The integrated features acting as the latent code are anchored to the SMPLX mesh in the canonical space. Finally, latent code for each 3D point is extracted and utilized to calculate the SDF. Our work for reconstructing the human shape on canonical pose achieves 3rd performance on WCPA MVP-Human Body Challenge.
翻译:在本报告中,我们注重重整在康纳空间的布衣人,并给人以面貌和成形,作为输入。为此,我们利用在康纳空间的SMPLX模型的几何前方,学习几何重建的隐含表示。基于以下观察,即构成的网目和库纳空间的网状网状之间的地形特征是一致的,我们建议通过利用多个输入图像来学习关于所构成的网格的潜伏代码,然后将潜伏代码分配给康纳空间的网状。具体地说,我们首先利用正常和几何网络来提取SMPLX网格中每个脊椎的特性矢量。我们采用了正常地图,以便与2D图象相比,更好地对看不见的图像进行概括化。然后,多图像所构成的网状网格中的每个脊椎的特征由MLPs融合在一起。作为潜伏代码的集集在康纳空间的SMPLXMES。最后,每个3D点的潜伏代码被提取并用于计算SDF。我们重建人类挑战系统3号的系统功能的合成的工作。