Word embeddings (e.g., word2vec) have been applied successfully to eCommerce products through~\textit{prod2vec}. Inspired by the recent performance improvements on several NLP tasks brought by contextualized embeddings, we propose to transfer BERT-like architectures to eCommerce: our model -- ~\textit{Prod2BERT} -- is trained to generate representations of products through masked session modeling. Through extensive experiments over multiple shops, different tasks, and a range of design choices, we systematically compare the accuracy of~\textit{Prod2BERT} and~\textit{prod2vec} embeddings: while~\textit{Prod2BERT} is found to be superior in several scenarios, we highlight the importance of resources and hyperparameters in the best performing models. Finally, we provide guidelines to practitioners for training embeddings under a variety of computational and data constraints.
翻译:嵌入的字词(如 word2vec) 已经成功地应用到 eCommerce 产品上, 通过“ textit{ prod2vec} ” 。 受最近通过背景化嵌入带来的几项NLP任务绩效改善的启发, 我们提议将类似 BERT 的架构转移到 eCommerce: 我们的模型 - { tuletit{ Prod2BERT} - 受过培训, 可以通过掩蔽的会话模型生成产品的演示。 通过对多个商店、不同任务和一系列设计选择的广泛实验, 我们系统地比较了“ textitit{ Prod2BERT} 和“ textitit{ prod2vec} 嵌入的准确性: 虽然在几种情景中发现“ textitit{ prod2BERT} 比较优异, 我们强调资源和超参数在最佳运行模型中的重要性。 最后, 我们为实践者提供培训在各种计算和数据限制下嵌入的指南。