Outlier detection is one of the most important processes taken to create good, reliable data in machine learning. The most methods of outlier detection leverage an auxiliary reconstruction task by assuming that outliers are more difficult to be recovered than normal samples (inliers). However, it is not always true, especially for auto-encoder (AE) based models. They may recover certain outliers even outliers are not in the training data, because they do not constrain the feature learning. Instead, we think outlier detection can be done in the feature space by measuring the feature distance between outliers and inliers. We then propose a framework, MCOD, using a memory module and a contrastive learning module. The memory module constrains the consistency of features, which represent the normal data. The contrastive learning module learns more discriminating features, which boosts the distinction between outliers and inliers. Extensive experiments on four benchmark datasets show that our proposed MCOD achieves a considerable performance and outperforms nine state-of-the-art methods.
翻译:外星探测是创造机器学习中良好、可靠数据的最重要过程之一。 外星探测的最主要方法通过假设外星比正常样本( 内核)更难回收, 从而影响辅助重建任务。 但是, 并非总是正确的, 特别是基于自动编码器的模型。 它们可能恢复某些外星, 即使是外星也不属于培训数据, 因为它们并不限制特性的学习。 相反, 我们认为, 外星探测可以通过测量外星和内层之间的特征距离在特征空间中进行。 我们然后提议一个框架, MCOD, 使用记忆模块和对比式学习模块。 内存模块限制了特征的一致性, 代表正常数据。 对比式学习模块学习了更多的区别性特征, 这增加了外星和内核的区别性。 对四个基准数据集的广泛实验显示, 我们提议的中外星探测能够取得相当大的性能, 并且超越了九个最先进的方法 。