This paper investigates the performance of Multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) systems with randomly deployed users, where the randomly deployed NOMA users follow Poisson point process (PPP), the spatial correlation between MIMO channels are characterized by using Kronecker model, and the composite channel model is used to capture large-scale fading as well as small-scale fading. The spatial randomness of users' distribution, the spatial correlation among antennas and large-scale fading will severally impact the system performance, but they are seldom considered in prior literature for MIMO-NOMA systems, and the consideration of all these impact factors challenges the analysis. Based on zero-forcing (ZF) detection, the exact expressions for both the average outage probability and the average goodput are derived in closed-form. Moreover, the asymptotic analyses are conducted for both high signal-to-noise ratio (SNR) (/small cell radius) and low SNR (/large cell radius) to gain more insightful results. In particular, the diversity order is given by $\delta = {{N_r} - {M} + 1}$, the average outage probability of $k$-th nearest user to the base station follows a scaling law of $O\left({D^{\alpha \left( {{N_r} - {M} + 1} \right) + 2k}}\right)$, the average goodput scales as $O({D^{2}})$ and $O({D^{-2}})$ as $D \to 0$ and $D \to \infty$, respectively, where $N_r$, $M$, $\alpha$ and $D$ stand for the number of receive antennas, the total number of data streams, the path loss exponent and the cell radius, respectively. The analytical results are finally validated through the numerical analysis.


翻译:本文调查由随机部署的用户拥有的多输入多输出非垂直多存取的系统(MIMO- NOMA)的性能, 随机部署的NOMA用户遵循 Poisson 点进程( PPP), MIMO 频道之间的空间相关性的特征是使用 Kronecker 模型, 并使用复合频道模型来捕捉大规模衰减和小规模衰减。 用户分布的空间随机性、 天线之间的空间相关性和大规模衰减将会对系统性能产生不同程度的影响, 但是在MIMO- NOMA 系统之前的文献中很少考虑这些功能, 而所有这些影响因素的考量都对分析提出了挑战。 以零度检测( ZF) 为基础, 平均外差概率和平均正值的表达方式都是闭合的。 此外, 对信号对数值对数值之比率( SNRI) (/ 小细胞半径) 和低单元格半径( NR) 的结果将获得更深刻的结果 。 特别是, 以 美元= O 平均 数据 的顺序分别给出了 美元 以 1 美元 美元 和 美元 美元 美元 基 的 美元 的 的 基 基 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员