In this paper, we prove a compressive sensing guarantee for restricted measurement domains on the rotation group, $\mathrm{SO}(3)$. We do so by first defining Slepian functions on a measurement sub-domain $R$ of the rotation group $\mathrm{SO}(3)$. Then, we transform the inverse problem from the measurement basis, the bounded orthonormal system of band-limited Wigner $D$-functions on $\mathrm{SO}(3)$, to the Slepian functions in a way that limits increases to signal sparsity. Contrasting methods using Wigner $D$-functions that require measurements on all of $\mathrm{SO}(3)$, we show that the orthogonality structure of the Slepian functions only requires measurements on the sub-domain $R$, which is select-able. Due to the particulars of this approach and the inherent presence of Slepian functions with low concentrations on $R$, our approach gives the highest accuracy when the signal under study is well concentrated on $R$. We provide numerical examples of our method in comparison with other classical and compressive sensing approaches. In terms of reconstruction quality, we find that our method outperforms the other compressive sensing approaches we test and is at least as good as classical approaches but with a significant reduction in the number of measurements.
翻译:在本文中,我们证明对旋转组的限制性测量域提供了压缩感测保证($\mathrm{SO}(3)美元)(3)美元。我们首先对旋转组的测量分域的Slepian函数进行定义($\mathrm{SO}(3)美元)(3)美元。然后,我们将反的问题从测量基数、带宽Wigner $D$-函数的捆绑正方正方正方正方正态系统($\mathrm{SO}(3)美元)(3)美元)转变为Slepian函数的压缩感测保证,从而限制信号的灵敏度。我们首先用Weigner $D$($D$)函数对要求测量所有值的Slepian分域元分域函数进行定义($\mathrm{SO}(3)美元)(3)。然后,我们将Slepian函数的反向量度结构从测量分域值($M$R$(美元)(3)美元)改为对Slepian函数以美元为内在的特性,我们的方法在研究中的信号显示最高准确性,当正在研究的信号的信号以$R$(美元为焦点分析方法中,我们用其他的精确方法作为其他方法的样本测试方法,我们用其他方法的样本测试方法提供了我们的其他方法的数值的数值的样本的样本的样本。