This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system. Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively, to minimize the objective of system subject to the computation/communication budget and a target latency requirement. In particular, mobile devices are connect via wireless TCP/IP architectures. Exploiting the optimization problem structure, the problem can be decomposed to two convex sub-problems. Drawing on the Lagrangian dual and harmony search techniques, we characterize the global optimal solution by the closed-form solutions to all sub-problems, which give qualitative insights to multi-resource tradeoff. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm.
翻译:这项工作提出了一个分布式多资源分配计划,以尽量减少在设备上分布式联合学习(FL)系统中的悬浮和能源消耗加权总和。系统中的每个移动设备在指定区域内采用示范培训过程,并分配其计算和通信资源,用于得出和上载参数,以尽量减少系统的目标,但取决于计算/通信预算和目标延缓要求。特别是,移动设备通过无线TCP/IP结构连接。利用优化问题结构,问题可能分解为两个共性子问题。我们利用拉格朗格双轨和和谐搜索技术,用封闭式解决方案描述所有子问题的全球最佳解决方案,这些解决方案为多资源交换提供定性见解。使用数字模拟来验证分析和评估拟议算法的性能。