We perform a scaling and performance portability study of the particle-in-cell scheme for plasma physics applications through a set of mini-apps we name "Alpine", which can make use of exascale computing capabilities. The mini-apps are based on Independent Parallel Particle Layer, a framework that is designed around performance portable and dimension independent particles and fields. We benchmark the simulations with varying parameters such as grid resolutions ($512^3$ to $2048^3$) and number of simulation particles ($10^9$ to $10^{11}$) with the following mini-apps: weak and strong Landau damping, bump-on-tail and two-stream instabilities, and the dynamics of an electron bunch in a charge-neutral Penning trap. We show strong and weak scaling and analyze the performance of different components on several pre-exascale architectures such as Piz-Daint, Cori, Summit and Perlmutter. While the scaling and portability study helps identify the performance critical components of the particle-in-cell scheme in the current state-of-the-art computing architectures, the mini-apps by themselves can be used to develop new algorithms and optimize their high performance implementations targeting exascale architectures.
翻译:我们通过一系列微型应用,对等离子物理学应用的微粒在细胞中的方案进行规模和可操作性分析,这些微型应用可以使用“Alpine”,可以使用模拟计算能力。微型应用以独立平行粒子层为基础,这是一个围绕性能便携式和维度独立颗粒和字段设计的框架。我们用不同的参数,例如电网分辨率(512美元3美元至2048美元3美元)和模拟粒子数量(10美元9美元至1011美元)对模拟粒子数量(10美元至1011美元)进行衡量和可操作性研究。这些微型应用包括:柔弱和强大的Landau搅拌、连锁和双流不稳,以及电子组在电荷中中式平流陷阱中的动态。我们展示了强大和薄弱的缩放度,并分析了若干前直线结构(如Piz-Daint、Cori、Celead and Perlmutter等)的不同组成部分的性能。虽然比例和可移动性研究有助于确定目前状态计算结构中微粒子细胞中的关键性组成部分,但微型应用的高级应用模型本身可以用来发展其最佳的高级性算。