Urban Air Mobility (UAM) presents a transformative vision for metropolitan transportation, but its practical implementation is hindered by substantial infrastructure costs and operational complexities. We address these challenges by modeling a UAM network that leverages existing regional airports and operates with an optimized, heterogeneous fleet of aircraft. We introduce LPSim, a Large-Scale Parallel Simulation framework that utilizes multi-GPU computing to co-optimize UAM demand, fleet operations, and ground transportation interactions simultaneously. Our equilibrium search algorithm is extended to accurately forecast demand and determine the most efficient fleet composition. Applied to a case study of the San Francisco Bay Area, our results demonstrate that this UAM model can yield over 20 minutes' travel time savings for 230,000 selected trips. However, the analysis also reveals that system-wide success is critically dependent on seamless integration with ground access and dynamic scheduling.
翻译:暂无翻译