The inverse approach is computationally efficient in aerodynamic design as the desired target performance distribution is specified. However, it has some significant limitations that prevent it from achieving full efficiency. First, the iterative procedure should be repeated whenever the specified target distribution changes. Target distribution optimization can be performed to clarify the ambiguity in specifying this distribution, but several additional problems arise in this process such as loss of the representation capacity due to parameterization of the distribution, excessive constraints for a realistic distribution, inaccuracy of quantities of interest due to theoretical/empirical predictions, and the impossibility of explicitly imposing geometric constraints. To deal with these issues, a novel inverse design optimization framework with a two-step deep learning approach is proposed. A variational autoencoder and multi-layer perceptron are used to generate a realistic target distribution and predict the quantities of interest and shape parameters from the generated distribution, respectively. Then, target distribution optimization is performed as the inverse design optimization. The proposed framework applies active learning and transfer learning techniques to improve accuracy and efficiency. Finally, the framework is validated through aerodynamic shape optimizations of the wind turbine airfoil. Their results show that this framework is accurate, efficient, and flexible to be applied to other inverse design engineering applications.


翻译:反向方法在空气动力设计中具有计算效率,因为规定了理想的目标性性能分布,然而,它有一些重大限制,妨碍它实现充分效率。首先,每当指定的目标分布变化时,应重复迭代程序;可以进行目标分布优化,以澄清具体分配的模糊性,但在这一过程中还出现若干其他问题,如分配参数化导致代表能力丧失,对现实分配的过度限制,理论/经验预测导致的兴趣量不准确,以及无法明确施加几何限制。为了处理这些问题,提议了一个具有两步深学习方法的新颖的反向设计优化框架。使用变式自动编码器和多层透视器来产生现实的目标分布,并分别预测所产生分配的利息和形状参数的数量。随后,目标分布优化作为反向设计优化来进行。拟议框架采用积极的学习和转让学习技术来提高准确性和效率。最后,框架通过气动形状优化风力涡轮机空气油的风力力调整得到验证。其结果显示,这一框架在设计上应用了准确性、高效性和灵活性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
ICLR 2020会议的16篇最佳深度学习论文
AINLP
5+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员