The approximate nearest neighbor (ANN) search problem is fundamental to efficiently serving many real-world machine learning applications. A number of techniques have been developed for ANN search that are efficient, accurate, and scalable. However, such techniques typically have a number of parameters that affect the speed-recall tradeoff, and exhibit poor performance when such parameters aren't properly set. Tuning these parameters has traditionally been a manual process, demanding in-depth knowledge of the underlying search algorithm. This is becoming an increasingly unrealistic demand as ANN search grows in popularity. To tackle this obstacle to ANN adoption, this work proposes a constrained optimization-based approach to tuning quantization-based ANN algorithms. Our technique takes just a desired search cost or recall as input, and then generates tunings that, empirically, are very close to the speed-recall Pareto frontier and give leading performance on standard benchmarks.
翻译:近邻(ANN)的大致搜索问题对于有效服务于许多真实世界机器学习应用程序至关重要。 已经为ANN的搜索开发了一些高效、准确和可缩放的技术。 但是,这些技术通常有一些参数影响快速召回的权衡,当这些参数没有适当设定时表现不佳。 调试这些参数传统上是一个人工过程, 要求深入了解基本搜索算法。 随着ANN的搜索越来越受欢迎, 这正在成为一个越来越不切实际的需求。 为了克服对ANN的采用设置障碍, 这项工作提出了一种基于优化的有限方法, 以调整基于量化的ANN算法。 我们的技术只是需要的搜索成本, 或作为输入, 然后产生非常接近快速召回Pareto边界的调整, 并在标准基准上领先业绩。