Previous studies have introduced a weakly-supervised paradigm for solving math word problems requiring only the answer value annotation. While these methods search for correct value equation candidates as pseudo labels, they search among a narrow sub-space of the enormous equation space. To address this problem, we propose a novel search algorithm with combinatorial strategy \textbf{ComSearch}, which can compress the search space by excluding mathematically equivalent equations. The compression allows the searching algorithm to enumerate all possible equations and obtain high-quality data. We investigate the noise in the pseudo labels that hold wrong mathematical logic, which we refer to as the \textit{false-matching} problem, and propose a ranking model to denoise the pseudo labels. Our approach holds a flexible framework to utilize two existing supervised math word problem solvers to train pseudo labels, and both achieve state-of-the-art performance in the weak supervision task.
翻译:先前的研究已经引入了解决数学词问题的微弱监督范式, 仅需要答案值注释说明。 虽然这些方法寻找正确的数值方程候选器作为假标签, 但它们在巨大的方程空间的狭小空间中搜索 。 为了解决这个问题, 我们提出一个新的搜索算法, 使用组合式战略 \ textbf{ComSearch} 来压缩搜索空间, 它可以排除数学等值方程 。 压缩可以让搜索算法列出所有可能的方程并获取高质量的数据 。 我们调查错误数学逻辑的伪方程中的噪音, 我们称之为 \ textit{ false- matching} 问题, 并推荐一个排入伪方程模型 。 我们的方法有一个灵活的框架, 利用两个现有的数学词问题解算器来训练假标签, 并且两者都能在薄弱的监管任务中取得最先进的表现 。</s>