We show that the probability of the exceptional set decays exponentially for a broad class of randomized algorithms approximating solutions of ODEs, admitting a certain error decomposition. This class includes randomized explicit and implicit Euler schemes, and the randomized two-stage Runge-Kutta scheme (under inexact information). We design a confidence interval for the exact solution of an IVP and perform numerical experiments to illustrate the theoretical results.
翻译:我们显示,例外设置的概率对于一大类随机化算法接近 ODE 的解决方案来说会指数衰减, 并承认一定的错误分解。 这一类别包括随机化的直线和隐含 Euler 计划, 以及随机化的两阶段龙格- Kutta 计划( 在不精确的信息中 ) 。 我们设计了IVP 精确解决方案的置信间隔, 并进行了数字实验以说明理论结果 。