We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method to embed a given binary $k$-dimensional linear code $\mathcal{C}$ ($k = 2,3,4$) into a self-orthogonal code of the shortest length which has the same dimension $k$ and minimum distance $d' \ge d(\mathcal{C})$. For $k > 4$, we suggest a recursive method to embed a $k$-dimensional linear code to a self-orthogonal code. We also give new explicit formulas for the minimum distances of optimal self-orthogonal codes for any length $n$ with dimension 4 and any length $n \not\equiv 6,13,14,21,22,28,29 \pmod{31}$ with dimension 5. We determine the exact optimal minimum distances of $[n,4]$ self-orthogonal codes which were left open by Li-Xu-Zhao (2008) when $n \equiv 0,3,4,5,10,11,12 \pmod{15}$. Then, using MAGMA, we observe that our embedding sends an optimal linear code to an optimal self-orthogonal code.
翻译:我们获得了对一个特定二进制线性代码自负线性特征的定性,该二进制代码以其发电机矩阵中的柱矢量数量为单位,延伸Bouyukliev 等人(2006年) (2006年) 作为应用程序,我们给出一种算法方法,将一个特定的二进制美元立方线代码 $\mathcal{C}美元= 2,3,4美元) 嵌入一个最短长度的自负数代码中,该代码的尺寸为6,13,14,21,22,28,29\pmod{31}。对于4美元,我们建议采用一种递归方法,将一个美元立方线代码嵌入一个自体-软体代码。我们还给出一个新的明确公式,用于将任何长度的最佳自体调代码的最小距离,其尺寸为4美元和任何长度为1美元,其尺寸为6,13,14,21,21,22,28,29\mod{pmod{31}其尺寸相同。 对于4美元,我们建议一种递归回式方法,将一个美元线性线性代码插入一个内部代码的精确最短的距离,值的距离,值为 $4,该代码,该值为以左的值为10,该代码,该代码,该值为10,该值为以左为10,该值的值的值的值为10,该值的值的值的值的值的值的值为开放-mode。