We study the problem of learning mixtures of low-rank models, i.e. reconstructing multiple low-rank matrices from unlabelled linear measurements of each. This problem enriches two widely studied settings -- low-rank matrix sensing and mixed linear regression -- by bringing latent variables (i.e. unknown labels) and structural priors (i.e. low-rank structures) into consideration. To cope with the non-convexity issues arising from unlabelled heterogeneous data and low-complexity structure, we develop a three-stage meta-algorithm that is guaranteed to recover the unknown matrices with near-optimal sample and computational complexities under Gaussian designs. In addition, the proposed algorithm is provably stable against random noise. We complement the theoretical studies with empirical evidence that confirms the efficacy of our algorithm.


翻译:我们研究学习低级模型的混合问题,即从无标签线性测量中重建多种低级矩阵。这个问题丰富了两个经过广泛研究的设置 -- -- 低级矩阵感测和混合线性回归 -- -- 通过将潜在变量(即未知标签)和结构前科(即低级结构)纳入考虑而丰富了两个内容。为了处理由无标签的混杂数据和低复杂度结构产生的非混凝土问题,我们开发了一个三阶段元等级,保证在Gaussian设计下用接近最佳的样本和计算复杂性来恢复未知的矩阵。此外,拟议的算法与随机噪声相比是相当稳定的。我们用证实我们算法有效性的经验证据来补充理论研究。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
18+阅读 · 2019年1月16日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员