We introduce space- and time-efficient algorithms and data structures for the offline set intersection problem. We show that a sorted integer set $S \subseteq [0{..}u)$ of $n$ elements can be represented using compressed space while supporting $k$-way intersections in adaptive $O(k\delta\lg{\!(u/\delta)})$ time, $\delta$ being the alternation measure introduced by Barbay and Kenyon. Our experimental results suggest that our approaches are competitive in practice, outperforming the most efficient alternatives (Partitioned Elias-Fano indexes, Roaring Bitmaps, and Recursive Universe Partitioning (RUP)) in several scenarios, offering in general relevant space-time trade-offs.
翻译:我们为离线设置交叉问题引入了时间效率高的空间算法和数据结构。 我们的实验结果表明,可以使用压缩空间来代表一组零元的整数($S\subseteq[0.{.}u]),同时支持美元-道路交叉($O(k\delta\lg}!(u/\delta)})时间($kk$-way),美元是Barbay和Kenyon采用的交替措施。我们的实验结果表明,我们的做法在实践中具有竞争力,在几种情况下比效率最高的替代方法(部分埃利亚斯-法诺指数、Roaring Bitmaps 和Recurive宇宙分割(RUP))要好,在一般的时空交易中提供。