We consider the fair allocation of indivisible items to several agents and add a graph theoretical perspective to this classical problem. Namely, we introduce an incompatibility relation between pairs of items described in terms of a conflict graph. Every subset of items assigned to one agent has to form an independent set in this graph. Thus, the allocation of items to the agents corresponds to a partial coloring of the conflict graph. Every agent has its own profit valuation for every item. Aiming at a fair allocation, our goal is the maximization of the lowest total profit of items allocated to any one of the agents. The resulting optimization problem contains, as special cases, both Partition and Independent Set. In our contribution we derive complexity and algorithmic results depending on the properties of the given graph. We show that the problem is strongly NP-hard for bipartite graphs and their line graphs, and solvable in pseudo-polynomial time for the classes of chordal graphs, cocomparability graphs, biconvex bipartite graphs, and graphs of bounded treewidth. Each of the pseudo-polynomial algorithms can also be turned into a fully polynomial approximation scheme (FPTAS).
翻译:我们考虑将不可分割的项目公平分配给多个代理商, 并给这个古典问题添加一个图形理论角度。 也就是说, 我们引入了冲突图中描述的对等项目之间的不兼容关系。 分配给一个代理商的每组项目都必须在本图表中组成独立的数据集。 因此, 分配给代理商的项目与冲突图的部分颜色相对应。 每个代理商都有其自身的利润价值。 为了公平分配, 我们的目标是最大限度地增加分配给任何一个代理商的项目的最低总利润。 由此产生的优化问题包含特殊案例, 包括分区和独立集。 在我们的贡献中, 我们根据给定图表的特性产生复杂性和算法结果。 我们表明, 对于双边图及其线图来说, 问题非常难解决, 而在伪圆形图、 cocomparable 图形、 biconvex 双方图和捆绑定的树枝图等类别中, 问题非常难解决 NP,, 并且对于双极图、 双极图、 双极图和图, 相框的图表, 每一个假极- 都可转换成一个完全的模型 。