In fair division applications, agents may have unequal entitlements reflecting their different contributions. Moreover, the contributions of agents may depend on the allocation itself. Previous fairness notions designed for agents with equal or pre-determined entitlement fail to characterize fairness in these collaborative allocation scenarios. We propose a novel fairness notion of average envy-freeness (AEF), where the envy of agents is defined on the average value of items in the bundles. Average envy-freeness provides a reasonable comparison between agents based on the items they receive and reflects their entitlements. We study the complexity of finding AEF and its relaxation, average envy-freeness up to one item (AEF-1). While deciding if an AEF allocation exists is NP-complete, an AEF-1 allocation is guaranteed to exist and can be computed in polynomial time. We also study allocation with quotas, i.e. restrictions on the sizes of bundles. We prove that finding AEF-1 allocation satisfying a quota is NP-hard. Nevertheless, in the instances with a fixed number of agents, we propose polynomial-time algorithms to find AEF-1 allocation with a quota for binary valuation and approximated AEF-1 allocation with a quota for general valuation.


翻译:在公平分配申请中,代理商可能拥有反映其不同贡献的不平等待遇。此外,代理商的贡献可能取决于分配本身。以前为平等或预先确定的权利代理商设计的公平概念没有在这些合作分配设想中体现公平性。我们提出了一种关于平均嫉妒的公平概念(AEF),即代理商的嫉妒是根据捆包中物品的平均价值来定义的。平均嫉妒无异性为根据收到的物品对代理商进行的合理比较提供了合理的比较,并反映了其应享待遇。我们研究了寻找AEF及其放松的复杂性,平均嫉妒无异于一个项目(AEF-1)。在决定AEF-1分配是否完整时,AEF-1分配是有保障的,可以在多年度时间内计算。我们还研究配额分配,即对捆包件的大小加以限制。我们证明,发现AEF-1分配满足配额的情况是困难的。然而,在有固定数量代理商的情况下,我们提议采用多时算法,以找到带有双估值配额的AEF-1分配和大致AEF-1分配配额。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员