Screening experiments are useful for screening out a small number of truly important factors from a large number of potentially important factors. The Gauss-Dantzig Selector (GDS) is often the preferred analysis method for screening experiments. Just considering main-effects models can result in erroneous conclusions, but including interaction terms, even if restricted to two-factor interactions, increases the number of model terms dramatically and challenges the GDS analysis. We propose a new analysis method, called Gauss-Dantzig Selector Aggregation over Random Models (GDS-ARM), which performs a GDS analysis on multiple models that include only some randomly selected interactions. Results from these different analyses are then aggregated to identify the important factors. We discuss the proposed method, suggest choices for the tuning parameters, and study its performance on real and simulated data.
翻译:筛选实验有助于从大量潜在重要因素中筛选出少数真正重要的因素。 Gauss-Dantzig 选择器(GDS)往往是筛选实验的首选分析方法。仅仅考虑主要效应模型可能会得出错误的结论,但包括互动术语,即使仅限于两个因素的相互作用,也大大增加了示范术语的数量,并对GDS分析提出了挑战。我们提出了一个新的分析方法,称为Gaus-Dantzig 选择器对随机模型的聚合(GDS-ARM),对只包括一些随机选定的相互作用的多种模型进行GDS分析。然后将这些不同分析的结果汇总,以确定重要因素。我们讨论拟议的方法,提出调整参数的选择,并研究其真实和模拟数据的性能。