Node connectivity plays a central role in temporal network analysis. We provide a comprehensive study of various concepts of walks in temporal graphs, that is, graphs with fixed vertex sets but edge sets changing over time. Importantly, the temporal aspect results in a rich set of optimization criteria for "shortest" walks. Extending and significantly broadening state-of-the-art work of Wu et al. [IEEE TKDE 2016], we provide a quasi-linear-time algorithm for shortest walk computation that is capable to deal with various optimization criteria and any linear combination of these. A central distinguishing factor to Wu et al.'s work is that our model allows to, motivated by real-world applications, respect waiting-time constraints for vertices, that is, the minimum and maximum waiting time allowed in intermediate vertices of a walk. Moreover, other than Wu et al. our algorithm does not request a strictly increasing time evolvement of the walk and can optimize a richer set of optimization criteria. Our experimental studies indicate that our richer modeling can be achieved without significantly worsening the running time.
翻译:节点连通性在时间网络分析中起着核心作用。 我们对时间图中行走的各种概念进行了全面研究, 即: 固定顶层图, 边缘图随时间变化而变化。 重要的是, 时间方面的结果为“ 浅色” 行走提供了一套丰富的优化标准。 延长并大大扩展了吴等人( IEEE TKDE 2016 ) 的最新工作, 我们为最短行走计算提供了一种准线性算法, 它可以处理各种优化标准及其任何线性组合。 对吴等人( Wu et al) 来说, 一个中心区别因素是, 我们的模式允许在现实世界应用的驱动下, 尊重对“ 浅色” 行走的等待时间的限制, 也就是, 在行走的中间旋转中允许的最低和最长等待时间。 此外, 除了吴等人( Uu et al ), 我们的算法并不要求严格增加行走时的演进时间, 并且可以优化更富裕的一套优化标准。 我们的实验研究表明, 我们更富的模型可以实现, 而不显著地恶化运行时间 。