Motivated by the problem of inferring the graph structure of functional connectivity networks from multi-level functional magnetic resonance imaging data, we develop a valid inference framework for high-dimensional graphical models that accounts for group-level heterogeneity. We introduce a neighborhood-based method to learn the graph structure and reframe the problem as that of inferring fixed effect parameters in a doubly high-dimensional linear mixed model. Specifically, we propose a LASSO-based estimator and a de-biased LASSO-based inference framework for the fixed effect parameters in the doubly high-dimensional linear mixed model, leveraging random matrix theory to deal with challenges induced by the identical fixed and random effect design matrices arising in our setting. Moreover, we introduce consistent estimators for the variance components to identify subject-specific edges in the inferred graph. To illustrate the generality of the proposed approach, we also adapt our method to account for serial correlation by learning heterogeneous graphs in the setting of a vector autoregressive model. We demonstrate the performance of the proposed framework using real data and benchmark simulation studies.
翻译:暂无翻译