Low earth orbit (LEO) satellite-assisted communications have been considered as one of key elements in beyond 5G systems to provide wide coverage and cost-efficient data services. Such dynamic space-terrestrial topologies impose exponential increase in the degrees of freedom in network management. In this paper, we address two practical issues for an over-loaded LEO-terrestrial system. The first challenge is how to efficiently schedule resources to serve the massive number of connected users, such that more data and users can be delivered/served. The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments.To address them, we first propose an iterative suboptimal algorithm to provide an offline benchmark. To adapt to unforeseen variations, we propose an enhanced meta-critic learning algorithm (EMCL), where a hybrid neural network for parameterization and the Wolpertinger policy for action mapping are designed in EMCL. The results demonstrate EMCL's effectiveness and fast-response capabilities in over-loaded systems and in adapting to dynamic environments compare to previous actor-critic and meta-learning methods.
翻译:低地球轨道(LEO)卫星辅助通信被认为是5G系统之外提供广泛覆盖面和高成本效益数据服务的关键要素之一,这种动态空间地表因素使网络管理的自由度急剧上升。在本文件中,我们讨论了超载低地球轨道-地球轨道系统的两个实际问题。第一个挑战是如何高效地安排资源,为大量连接用户提供服务,使更多的数据和用户能够提供/服务。第二个挑战是如何使算法解决方案在适应动态无线环境方面更具复原力。为了应对这些挑战,我们首先建议采用迭代亚最佳算法,以提供一个离线基准。为了适应意外的变化,我们建议采用强化的元气候学习算法,在EMMCL中设计了用于参数化的混合神经网络和行动绘图的Wolpertinger政策。结果显示了超载系统的效力和快速反应能力以及适应与以往的演员-criti和元学习方法相比的动态环境的能力。