Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent.
翻译:学术论证采矿(SAM)最近由于有可能帮助学者迅速发展出版的科学文献而引起注意,因此最近引起注意:它包括两个子任务:辩论讨论单位确认(ADUR)和辩论关系提取(ARE),这两个子任务都具有挑战性,因为它们需要整合域知识,发现隐含的言辞,以及辨别争论结构。虽然以前的工作侧重于具体文件章节的数据集构建和基线方法,例如抽象或结果,全文学术论证采矿,但进展甚微。在这项工作中,我们引入了将ADUR和ARE合并为全文的ADUR和ARE的连续管道模型模型,并首次分析了这两类子任务中经过预先训练的语言模型的性能。我们在Sci-Argamp上为ADUR建立了一个新的SotA,这超过了以前所报告的大幅度(+7% F1)的最佳结果。我们还介绍了ARE的第一批结果,从而也介绍了整个AM的管道,在这个基准数据集上,我们详细的错误分析表明,非相交式的ADUs 以及将数据作为更一致的数据解释,成为对主要数据的需求。