Network function virtualization is a promising technology to simultaneously support multiple services with diverse characteristics and requirements in the 5G and beyond networks. In particular, each service consists of a predetermined sequence of functions, called service function chain (SFC), running on a cloud environment. To make different service slices work properly in harmony, it is crucial to appropriately select the cloud nodes to deploy the functions in the SFC and flexibly route the flow of the services such that these functions are processed in the order defined in the corresponding SFC, the end-to-end (E2E) latency constraints of all services are guaranteed, and all cloud and communication resource budget constraints are respected. In this paper, we first propose a new mixed binary linear program (MBLP) formulation of the above network slicing problem that optimizes the system energy efficiency while jointly considers the E2E latency requirement, resource budget, flow routing, and functional instantiation. Then, we develop another MBLP formulation and show that the two formulations are equivalent in the sense that they share the same optimal solution. However, since the numbers of variables and constraints in the second problem formulation are significantly smaller than those in the first one, solving the second problem formulation is more computationally efficient especially when the dimension of the corresponding network is large. Numerical results demonstrate the advantage of the proposed formulations compared with the existing ones.


翻译:网络功能虚拟化是一个大有希望的技术,可以同时支持5G网络内外具有不同特点和要求的多种服务,特别是,每个服务都包含一个预先确定的功能序列,称为服务功能链(SFC),在云层环境中运行。为了使不同的服务切片在和谐中正常工作,必须适当选择云节点,以便在SFC中部署功能,灵活地安排服务流动,以便这些功能按照相应的SFC中界定的顺序处理,保证所有服务的端到端(E2E)延迟度限制,并尊重所有云和通信资源预算限制。在本文中,我们首先提出一个新的混合双线程序(MBLP),即上面网络的混合双线程序(MBLP)的制定,以优化系统能源效率,同时考虑E2E的拉伸缩要求、资源预算、流动路线和功能即时速。然后,我们制定另一个MBLP的公式,表明所有服务的端至端(E2E)的延迟度限制都得到保证,而所有云和通信资源预算限制都受到尊重。在本文件中,我们首先提出新的混合双向线程序(MBLP),因为第二个变量和双线程序的设置的变量和二进制式设计中,在比较的优势的计算中,其次数比前者要大大缩小于前者的计算。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员