In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical structure such as distributionally robust federated learning and model-agnostic meta learning (MAML). Moreover, we study the convergence analysis of our ComFedL algorithm under some mild conditions, and prove that it achieves a fast convergence rate of $O(\frac{1}{\sqrt{T}})$, where $T$ denotes the number of iteration. To the best of our knowledge, our algorithm is the first work to bridge federated learning with composition stochastic optimization. In particular, we first transform the distributionally robust FL (i.e., a minimax optimization problem) into a simple composition optimization problem by using KL divergence regularization. At the same time, we also first transform the distribution-agnostic MAML problem (i.e., a minimax optimization problem) into a simple composition optimization problem. Finally, we apply two popular machine learning tasks, i.e., distributionally robust FL and MAML to demonstrate the effectiveness of our algorithm.


翻译:在论文中,我们提出一个高效、高效和高效的联邦综合学习(ComFedL)算法(ComFedL)算法(ComFedL)用于解决一个新的组成联邦学习(FL)框架(FL)框架(FL),这个算法经常出现在许多机械学习问题中,如分布式强的联邦学习和模型-不可知性元学习(MAML)等等级结构。此外,我们还在一些温和条件下研究我们的ComFedL算法(ComFedL)趋同分析法(ComFMedL)的趋同分析,并证明它达到美元(frac{1unsqrt{T ⁇ )的快速趋同率($T$T),用美元表示迭代数。根据我们的知识,我们的算法,我们的算法,我们首先运用两种流行的机器,即MAML, 和MAL, 分配法(i.L. ) 来展示我们流行的算法效果。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月20日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
44+阅读 · 2019年12月20日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【NeurIPS 2020】生成对抗性模仿学习的f-Divergence
专知会员服务
25+阅读 · 2020年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年8月20日
Multi-Center Federated Learning
Arxiv
0+阅读 · 2021年8月19日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
44+阅读 · 2019年12月20日
Top
微信扫码咨询专知VIP会员